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Abstract

It has been proved by Bertoin and Caballero [8] that a 1/α-increasing self-similar
Markov process X is such that t−1/αX(t) converges weakly, as t → ∞, to a degenerated
r.v. whenever the subordinator associated to it via Lamperti’s transformation has infinite
mean. Here we prove that log(X(t)/t1/α)/ log(t) converges in law to a non-degenerated r.v.
if and only if the associated subordinator has Laplace exponent that varies regularly at 0.
Moreover, we show that lim inft→∞ log(X(t))/ log(t) = 1/α, a.s. and provide an integral
test for the upper functions of {log(X(t)), t ≥ 0}. Furthermore, results concerning the
rate of growth of the random clock appearing in Lamperti’s transformation are obtained.
In particular, these allow us to establish estimates for the left tail of some exponential
functionals of subordinators. Finally, some of the implications of these results in the
theory of self-similar fragmentations are discussed.

Keywords: Dynkin-Lamperti Theorem, Lamperti’s transformation, law of iterated logarithm,
subordinators, weak limit theorem.

1 Introduction

Let X = {X(t), t ≥ 0} be a positive self-similar Markov process with càdlàg and increasing
paths, viz. X is a ]0,∞[ valued strong Markov process that fulfills the scaling property: there
exists an α > 0 such that for every c > 0(

{cX(tc−α), t ≥ 0}, IPx

) Law
= ({X(t), t ≥ 0}, IPcx) , x ∈]0,∞[,

where IPy denotes the law of the process X with starting point y > 0. We will say that X is
an increasing 1/α-pssMp. Examples of this class of processes are: stable subordinators; in the
theory of extremes, the extremal process with Q-function given by ax−b, for x > 0 and ∞ in
other case, for some indices a, b > 0 (for a more precise description of the latter example see
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[20] Section 5); in the theory of self-similar fragmentations, the reciprocal of the process of a
tagged fragment, see [7] Section 3.3.

It is well known that by means of a transformation due to Lamperti [19] any increasing
positive self-similar Markov processes can be transformed into a subordinator and vice-versa.
By a subordinator we mean a càdlàg real valued process with independent and stationary
increments, that is, a Lévy process with increasing paths. To be more precise about Lamperti’s
transformation, given an increasing 1/α-pssMp X we define a new process ξ by

ξt = log

(
X(γt)

X(0)

)
, t ≥ 0,

where {γt, t ≥ 0} denotes the inverse of the additive functional∫ t

0

X−α
s ds, t ≥ 0.

The process ξ = {ξt, t ≥ 0} defined this way is a subordinator started from 0, and we denote
by P its law. Reciprocally, given a subordinator ξ and α > 0, the process constructed in the
following way is an increasing 1/α-pssMp. For x > 0, we denote by IPx the law of the process

x exp{ξτ(t/xα)}, t ≥ 0,

where {τ(t), t ≥ 0} is the inverse of the additive functional

Ct :=

∫ t

0

exp{αξs}ds, t ≥ 0. (1)

So for any x > 0, IPx, is the law of an 1/α-pssMp started from x > 0. We will refer to any of
these transformations as Lamperti’s transformation.

In a recent work Bertoin and Caballero [8] studied the problem of existence of entrance
laws at 0+ for increasing pssMp. In that work Bertoin and Caballero established that if
the subordinator (ξ,P) associated to (X, IP) via Lamperti’s transformation has finite mean
m := E(ξ1) < ∞, then there exists a non-degenerated probability measure IP0+ on the space
of paths that are right continuous and left limited which is the limit in the sense of finite
dimensional laws of IPx as x → 0 + . Using the scaling and Markov properties it is easy to see
that the latter result is equivalent to the weak convergence of random variables

t−1/αX(t)
Law−−−→
t→∞

Z, (2)

where X is started at 1 and Z is a non-degenerated random variable. The law of Z will be
denoted by µ, and it is the probability measure defined by

µ(f) := IE0+ (f(X(1))) =
1

αm
E

(
f

((
1

I

)1/α
)

1

I

)
, (3)

for any measurable function f : R+ → R+; where I is the exponential functional

I :=

∫ ∞

0

exp{−αξs}ds,

associated to the subordinator ξ, see [8]. The following result complements that of Bertoin and
Caballero.

2



Proposition 1. Let {X(t), t ≥ 0} be a positive 1/α-self-similar Markov process with increasing
paths. Assume that the subordinator ξ, associated to X via Lamperti’s transformation has finite
mean, m = E(ξ1) < ∞. Then

1

log(t)

∫ t

0

f(s−1/αX(s))
ds

s
−−−→
t→∞

µ(f), IP0+−a.s.

for every function f ∈ L1(µ). Furthermore,

log (X(t))

log(t)
−−−→
t→∞

1/α, IP1−a.s.

In fact, the results of the previous proposition are not new, the first assertion can be obtained
as a consequence of an ergodic theorem for self-similar processes due to Csáki and Földes [16],
and the second assertion has been obtained in [6]. However, we provide a proof of these results
for ease of reference.

In the work [8] the authors also proved that if the subordinator (ξ,P) has infinite mean then
the convergence in law in (2) still holds but Z is a degenerated random variable equal to ∞
a.s. The main purpose of this work is study in this setting the rate at which t−1/αX(t) tends
to infinity as the time growths.

Observe that the asymptotic behaviour of (X, IP) at large times is closely related to the large
jumps of it, because it is so for the subordinator (ξ,P). So, for our ends it will be important to
have some information about the large jumps of (ξ,P) or equivalently on those of (X, IP). Such
information will be provided by the following assumption. Let φ : R+ → R+ be the Laplace
exponent of (ξ,P), viz.

φ(λ) := − log
(
E(e−λξ1)

)
= dλ +

∫
]0,∞[

(1− e−λx)Π(dx), λ ≥ 0,

where d ≥ 0 and Π is a measure on ]0,∞[ such that
∫

(1 ∧ x)Π(dx) < ∞, they are called the
drift term and Lévy measure of ξ, respectively. We will assume that φ is regularly varying at
0, i.e.

lim
λ→0

φ(cλ)

φ(λ)
= cβ, c > 0,

for some β ∈ [0, 1], which will be called the index of regular variation of φ. In the case where
β = 0, it is said that the function φ is slowly varying. It is known that φ is regularly varying at
0 with an index β ∈]0, 1[ if and only if the right tail of the Lévy measure Π is regularly varying
with index −β, viz.

lim
x→∞

Π]cx,∞[

Π]x,∞[
= c−β, c > 0. (4)

Well known examples of subordinators whose Laplace exponent is regularly varying are the
stable subordinators and the Gamma subordinator. A quite rich but less known class of su-
bordinators whose Laplace exponent is regularly varying at 0 is that one of tempered stable
subordinators, see [21] for background on tempered stable laws. In this case, the drift term is
equal to 0, and the Lévy measure Πδ has the form Πδ(dx) = x−δ−1q(x)dx, x > 0, where δ ∈]0, 1[
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and q : R+ → R+ is a completely monotone function such that
∫ 1

0
x−δq(x)dx < ∞. By L’Hôpital

rule’s, for Πδ to be such that that the condition (4) is satisfied it is necessary and sufficient that
q be regularly varying at infinity with index −λ and such that 0 < λ + δ < 1. By the theory
of completely monotone functions it is known that there exists a measure µ, over [0,∞[ such
that q can be represented as q(x) =

∫∞
0

e−xyµ(dy) for x ≥ 0. Owing to Karamata’s Tauberian
Theorem (Theorem 1.7.1 in [11]) it follows that the condition (4) is equivalent to the regular
variation at zero of the function x 7→ µ[0, x], x > 0, with index −λ for some 0 ≤ λ < 1− δ.

We have all the elements to state our first main result.

Theorem 1. Let {X(t), t ≥ 0} be a positive 1/α-self-similar Markov process with increasing
paths. The following assertions are equivalent:

(i) The subordinator ξ, associated to X via Lamperti’s transformation, has Laplace exponent
φ : R+ → R+, which is regularly varying at 0 with an index β ∈ [0, 1].

(ii) Under IP1 the random variables
{
log(X(t)/t1/α)/ log(t), t > 1

}
converge weakly as t →∞

towards a r.v. V.

(iii) For any x > 0, under IPx the random variables
{
log(X(t)/t1/α)/ log(t), t > 1

}
converge

weakly as t →∞ towards a r.v. V.

In this case, the law of V is determined in terms of the value of β as follows: V = 0 a.s. if
β = 1; V = ∞, a.s. if β = 0, and if β ∈]0, 1[, its law has a density given by

α1−β2β sin(βπ)

π
v−β(2 + αv)−2dv, v > 0.

We will see in the proof of Theorem 1 that under the assumption of regular variation of φ
at 0, the asymptotic behaviour of X(t) is quite irregular. Namely, it is not of order ta for any
a > 0, see Remark 5. This justifies our choice of smoothing the paths of X by means of the
logarithm.

The proof of this Theorem uses among other tools the Dynkin-Lamperti Theorem for sub-
ordinators, see e.g. [4]. Actually, we can find some similarities between the Dynkin-Lamperti
Theorem and our Theorem 1. For example, the conclusions of the former hold if and only if
one of the conditions of the latter hold; both theorems describe the asymptotic behaviour of ξ
at a sequence of stopping times, those appearing in the former are the first passage times above
a barrier, while in the latter they are given by τ(·). It shall be justified in Section 8 that in fact
both families of stopping times bear similar asymptotic behaviours.

Besides, the equivalence between (ii) and (iii) in Theorem 1 is a simple consequence of the
scaling property. Another simple consequence of the scaling property is that: if there exists a
normalizing function h : R+ → R+ such that for any x > 0, under IPx, the random variables{
log(X(t)/t1/α)/h(t), t > 0

}
converge weakly as t → ∞ towards a non-degenerated random

variable V whose law does not depend on x, then the function h is slowly varying at infinity.
In view of this, it is natural to ask, in the case where the Laplace exponent is not regularly
varying at 0, if there exists a function h that growths faster or slower than log(t) and such that
log(X(t)/t1/α)/h(t) converges in law to a non-degenerated random variable? The following
result answers this question negatively.
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Theorem 2. Assume that the Laplace exponent of ξ is not regularly varying at 0 with a strictly
positive index and let h : R+ → R+ be a function. If h(t)/ log(t) tends to 0 or ∞, as t → ∞,
and the law of log(X(t)/t1/α)/h(t), under IP1, converges weakly to a real valued r.v., as t →∞,
then the limiting random variable is degenerated.

Now, observe that, in the case where the underlying subordinator has finite mean, Propo-
sition 1 provides some information about the rate of growth of the random clock (τ(t), t ≥ 0)
because it is equal to the additive functional

∫ t

0
X−α

s ds, t ≥ 0. Besides, in the case where φ is
regularly varying at 0 with an index in [0, 1[ it can be verified that

1

log(t)

∫ t

0

X−α
s ds −−−→

t→∞
0, IP1−a.s.

see Remark 4 below. Nevertheless, in the latter case we can establish an estimate of the Darling-
Kac type for the functional

∫ t

0
X−α

s ds, t ≥ 0, which provides some insight about the rate of
growth of the random clock. This is the content of the following result.

Proposition 2. The following conditions are equivalent:

(i) φ is regularly varying at 0 with an index β ∈ [0, 1].

(ii) The law of φ
(

1
log(t)

) ∫ t

0
X−α

s ds, under IP1, converges in distribution, as t →∞, to a r.v.
α−βW, where W is a r.v. that follows a Mittag-Leffler law of parameter β ∈ [0, 1].

(iii) For some β ∈ [0, 1], IE1

((
φ
(

1
log(t)

) ∫ t

0
X−α

s ds
)n)

converges towards α−βnn!/Γ(1 + nβ),

for n = 0, 1, . . . , as t →∞.

Before continuing with our exposition about the asymptotic results for log(X) let us make a
digression to remark that this result has an interesting consequence for a class of r.v. introduced
by Bertoin and Yor [9] that we next explain. Recently, Bertoin and Yor proved that there exists
a R+ valued r.v. Rφ associated to Iφ :=

∫∞
0

exp{−αξs}ds, such that

RφIφ
Law
= E, where E follows an exponential law of parameter 1.

The law of Rφ is completely determined by its entire moments, which in turn are given by

E(Rn
φ) =

n∏
k=1

φ(αk), for n = 1, 2, . . .

Furthermore, the law of Rφ is related to X by the following formula

IE1

(
X−α

s

)
= E(e−sRφ), s ≥ 0.

It follows therefrom that

IE1

(∫ t

0

X−α
s ds

)
=

∫
[0,∞[

1− e−tx

x
P(Rφ ∈ dx), t ≥ 0.

These relations allow us to establish the following corollary.
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Corollary 1. Assume that φ is regularly varying at 0 with index β ∈ [0, 1]. The following
estimates

E

(
1{Rφ>s}

1

Rφ

)
∼ 1

αβΓ(1 + β)φ(1/ log(1/s))
, P(Rφ < s) = o

(
s

αβΓ(1 + β)φ(1/ log(1/s))

)
,

as s → 0, hold. If furthermore, the function λ/φ(λ), λ > 0, is the Laplace exponent of a
subordinator then

E

(
1{Iφ>s}

1

Iφ

)
∼ αβ log(1/s)φ(1/ log(1/s))

Γ(2− β)
, P(Iφ < s) = o

(
αβs log(1/s)φ (1/ log(1/s))

Γ(2− β)

)
,

as s → 0.

It is known, [22] Theorem 2.1, that the Laplace exponent φ is such that the function λ/φ(λ) is
the Laplace exponent of a subordinator if and only if the renewal measure of ξ has a decreasing
density; see also [18] Theorem 2.1 for a sufficient condition on the Lévy measure for this to
hold. The relevance of the latter estimates relies on the fact that in the literature about the
subject there are only a few number of subordinators for which estimates for the left tail of Iφ

are known.
In the following theorem, under the assumption that (i) in Theorem 1 holds, we obtain a

law of iterated logarithm for {log(X(t)), t ≥ 0} and provide an integral test to determine the
upper functions for it.

Theorem 3. Assume that the condition (i) in Theorem 1 above holds with β ∈]0, 1[. We have
the following estimates of log(X(t)).

(a) lim inf
t→∞

log (X(t))

log(t)
= 1/α, IP1−a.s.

(b) Let g :]e,∞[→ R+ be the function defined by

g(t) =
log (log(t))

ϕ (t−1 log (log(t)))
, t > e,

with ϕ the right continuous inverse of φ. For any increasing function f with positive
increase, i.e. 0 < lim inft→∞

f(t)
f(2t)

, we have that

lim sup
t→∞

log(X(t))

f (log(t))
= 0, or = ∞, IP1−a.s. (5)

according whether ∫ ∞
φ (1/f(g(t))) dt < ∞, or = ∞. (6)

Remark 1. Observe that in the case where the Laplace exponent varies regularly at 0 with
index 1, then Theorem 1 implies that

log (X(t))

log(t)

Probability−−−−−−→
t→∞

1/α.
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A question that remains open is what are NASC for this convergence to hold almost surely?
Proposition 1 says that the finiteness of the mean of the underlying subordinator is a sufficient
condition for this to hold. So it should be determined if this condition is also necessary?

Remark 2. In the case where φ is slowly varying at 0, Theorem 1 implies that

log (X(t))

log(t)

Probability−−−−−−→
t→∞

∞.

In the proof of Theorem 2 it will be seen that if h : R+ →]0,∞[ is a function such that
log(t)/h(t) → 0 as t →∞, then

log (X(t))

h(t)

Probability−−−−−−→
t→∞

0.

Which is a weak analogue of Theorem 3.

Remark 3. Observe that the local behaviour of X, when started at a strictly positive point,
is quite similar to that of the underlying subordinator. This is due to the elementary fact

τ(t)

t
−−−→
t→0+

1, IP1−a.s.

So, for short times the behaviour of ξ is not affected by the time change, which is of course
not the case for large times. Using this fact and known results for subordinators, precisely
Theorem 3 in [3] Section III.3, it is straightforward to prove the following Proposition which is
the analogous in short time of our Theorem 1. We omit the details of the proof.

Proposition 3. Let {X(t), t ≥ 0} be a positive 1/α-self-similar Markov process with increasing
paths. The following conditions are equivalent:

(i) The subordinator ξ, associated to X via Lamperti’s transformation, has Laplace exponent
φ : R+ → R+, which is regularly varying at ∞ with an index β ∈]0, 1[.

(ii) There exists an increasing function h : R+ → R+ such that under IP1 the random variables
{h(t) log(X(t)), t > 0} converge weakly as t → 0 towards a non-degenerated r.v.

(ii) There exists an increasing function h : R+ → R+ such that under IP1 the random variables
h(t) (X(t)− 1) , t > 0 converge weakly as t → 0 towards a non-degenerated r.v.

In this case, the limit law is a stable law with parameter β, and h(t) ∼ ϕ(1/t), as t → 0, with
ϕ the right continuous inverse of φ.

It is also possible to obtain an analogue of Theorem 3, which is a simple translation for
pssMp of results such as those appearing in [3] Section III.4. A study of the short and large
time behaviour of X under IP0+ has been done in [20] and [15].

To finish this section we mention that our Theorem 1 has an interesting application to self-
similar fragmentation processes that we next describe. We first provide a few definitions from
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fragmentation theory, and refer to the recent book [7] for background on it. First, we introduce
the set

S↓ =

{
s = (si)i∈N : 1 > s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si = 1

}
.

Let Y = (Y (t), t ≥ 0) denote a random process such that

Y (t) = (Y1(t), Y2(t), . . .) ∈ S↓, ∀t ≥ 0, a.s.

We suppose that Y is continuous in probability and Markovian. For every r ≥ 0, we denote by
Qr the law of Y started from the configuration (r, 0, . . .), and assume that Q0(Y1(t) = 0) = 1.
It is said that Y is a self-similar fragmentation process if:

• There exists α ∈ R, called index of self-similarity, such that for every r > 0 the distribution
under Q1 of the rescaled process (rY (rαt), t ≥ 0) is Qr.

• For every s = (s1, s2, . . .) ∈ S↓, if (Y (i), i ∈ N) is a sequence of independent processes such
that Y (i) has the law Qsi

, and if Ỹ denotes the decreasing rearrangement of the family
(Y

(i)
n (t) : i, n ∈ N), then Ỹ = (Ỹ (t), t ≥ 0) is a version of Y started from configuration s.

It is known that associated to Y there exists a characteristic triple (κ, c, ν), where κ ≥ 0, is the
killing rate, c ≥ 0 is known as the erosion coefficient and ν is the so called splitting measure,
which is a measure over S↓ such that∫

S↓
ν(ds)(1− s1) < ∞.

Here we will only consider self-similar fragmentations with self-similarity index α > 0, and
killing and erosion coefficient κ = 0 = c. In [6], Bertoin studied under some assumptions the
long time behaviour of the process Y via an empirical probability measure carried, at each t,
by the components of Y (t)

ρ̃t(dy) =
∑
i∈N

Yi(t)δt1/αYi(t)(dy), t ≥ 0. (7)

To be more precise, he proved that if the function

Φ(q) :=

∫
S↓

(
1−

∞∑
i=1

sq+1
i

)
ν(ds), q > 0,

is such that m := Φ′(0+) < ∞, then the measure defined in (7) converges in probability to a
deterministic measure, say ρ̃∞, which is completely determined by its entire moments∫ ∞

0

xαkρ̃∞(dx) =
(k − 1)!

αµΦ(α) · · ·Φ(α(k − 1))
, k = 1, 2, . . .

with the assumption that the latter quantity equals (αm)−1, when k = 1. Bertoin proved this
result by cleverly applying the results in [8] and the fact that there exists a 1/α-increasing
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positive self-similar Markov process, say Z̃ =
(
Z̃t, t ≥ 0

)
, called the process of the tagged

fragment such that Qr(Z̃0 = r) = 1, and for any bounded and measurable function f : R+ → R+

Q1 (ρ̃tf) = Q1

(
∞∑
i=1

Yi(t)f(t1/αYi(t))

)
= Q1

(
f
(
t1/α/Z̃t

))
, t ≥ 0;

and that the process Z̃ is an increasing 1/α–pssMp whose underlying subordinator has Laplace
exponent Φ. Besides, it can be viewed, using the method of proof of Bertoin, that if Φ′(0+) = ∞,
then the measure ρ̃t converges in probability to the law of a r.v. degenerated at 0. This suggest
that in the latter case, to obtain further information about the repartition of the components of
Y (t) it would be convenient to study a different form of the empirical measure of Y. A suitable
form of the empirical measure is given by the random probability measure

ρt(dy) =
∞∑
i=1

Yi(t)δ{log(Yi(t))/ log(t)}(dy), t ≥ 0.

The arguments provided by Bertoin are quite general and can be easily modified to prove the
following consequence of Theorem 1, we omit the details of the proof.

Corollary 2. Let Y be a self-similar fragmentation with self-similarity index α > 0 and charac-
teristics (0, 0, ν). Assume that the function Φ is regularly varying at 0 with an index β ∈ [0, 1].
Then, as t → ∞, the random probability measure ρt(dy) converges in probability towards the
law of −α−1 − V, where V is as in Theorem 1.

This result extend to the case with infinite mean some results in Brennan and Durrett
in [12, 13]. This will be made precise in Section 7, where we will provide necessary conditions
on the splitting measure for the function Φ to satisfy the hypotheses in Corollary 2.

The rest of this note is devoted to prove the results stated before. The document is organized
so that each subsequent Section contains a proof. The last section of this work is constituted
of a comparison of the results here obtained and those known that describe the behaviour of
the underlying subordinator.

2 Proof of Proposition 1

Assume that the mean of ξ is finite, m := E(ξ1) < ∞. According to the result of Bertoin and
Caballero there exists a measure IP0+ on the space of càdlàg paths defined over ]0,∞[ that
takes only positive values, under which the canonical process is a strong Markov process with
the same semigroup as X and its entrance law can be described by means of the exponential
functional I =

∫∞
0

exp{−αξs}ds, by the formula

IE0+ (f(X(t))) =
1

αm
E

(
f
(
(t/I)1/α

) 1

I

)
, t > 0,

for any measurable function f : R+ → R+ . A straightforward consequence of the scaling
property is that the process of the Ornstein-Uhlenbeck type U defined by

Ut = e−t/αX(et), t ∈ R,
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under IE0+ is a strictly stationary process. This process has been studied by Carmona, Petit
and Yor [14] and by Rivero in [20]. Therein, is proved that U is a positive recurrent and strong
Markov process. Observe that the law of U0 under IE0+, is given by the probability measure µ
defined in (3). By the ergodic theorem we have that

1

t

∫ t

0

f(Us)ds −−−→
t→∞

IE0+ (f(U0)) = µ(f), IP0+−a.s.

for every function f ∈ L1(µ). Observe that a change of variables u = es in the latter equation
allows to deduce that

1

log(t)

∫ t

1

f(u−1/αX(u))
du

u
=

1

log(t)

∫ log(t)

0

f(Us)ds −−−→
t→∞

IE0+ (f(U0)) , IP0+−a.s.

Now to prove the second assertion of Proposition 1 we use the well known fact that

lim
t→∞

ξt

t
= m, P−a.s.

So, to prove the result it will be sufficient to establish that

τ(t)/ log(t) −−−→
t→∞

1/mα, P−a.s. (8)

Because in that case
log(X(t))

log(t)
=

ξτ(t)

τ(t)

τ(t)

log(t)
−−−→
t→∞

m/αm, P−a.s.

Now, a simple consequence of Lamperti’s transformation is that

τ(t) =

∫ t

0

X−α
s ds =

∫ t

0

(
s−1/αX(s)

)−α ds

s
, t ≥ 0.

So, the result just proved applied to the function f(x) = x−α, x > 0, leads

1

log(1 + t)

∫ 1+t

1

(
u−1/αX(u)

)−α du

u
−−−→
t→∞

1/αm, IP0+−a.s.

Denote by H the set were the latter convergence holds. By the Markov property it is clear that

IP0+

(
IPX(1)

(
1

log(1 + t)

∫ t

0

(
u−1/αX(u)

)−α du

u
9 1/αm

))
= IP0+ (Hc) = 0.

So for IP0+–almost every x > 0,

IPx

(
1

log(1 + t)

∫ t

0

(
u−1/αX(u)

)−α du

u
−−−→
t→∞

1/αm

)
= 1.

For such an x, it is a consequence of the scaling property that

1

log(1 + t)

∫ t

0

(
u−1/αxX(ux−α)

)−α du

u
−−−→
t→∞

1/αm, IP1−a.s.

Therefore, by making a change of variables s = ux−α and using the fact that log(1+tx−α)
log(t)

→ 1,

as t → ∞, we prove that (8) holds. Which in view of the previous comments finish the proof
of the second assertion in Proposition 1.
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Remark 4. In the case where the mean is infinite, E(ξ1) = ∞, we can still construct a measure
N with all but one of the properties of IP0+; the missing property is that N is not a probability
measure, it is in fact a σ-finite, infinite measure. The measure N is constructed following the
methods used by Fitzsimmons [17], the details of this construction are beyond the scope of this
note so we omit them. Thus, using results from the infinite ergodic theory (see e.g. [1] Section
2.2) it can be verified that

1

log(t)

∫ t

0

f(s−1/αX(s))
ds

s
−−−→
t→∞

0, IP1−a.s.

for every function f such that N(|f(X(1))|) = µ|f | < ∞; in particular for f(x) = x−α, x > 0.

3 Proof of Theorem 1

The proof of Theorem 1 follows the method of proof in [8]. So, here we will first explain how
the auxiliary Lemmas and Corollaries in [8] can be extended in our setting and then we will
apply those facts to prove the claimed results.

We start by introducing some notation. We define the processes of the age and rest of life
associated to the subordinator ξ,

(At, Rt) = (t− ξL(t−), ξL(t) − t), t ≥ 0,

where L(t) = inf{s > 0 : ξs > t}. The methods used by Bertoin and Caballero are based
on the fact that if the mean E(ξ1) < ∞ then the random variables (At, Rt) converge weakly
to a non-degenerated random variable (A, R) as the time tends to infinity. In our setting,
E(ξ1) = ∞, the random variables (At, Rt) converge weakly towards (0,∞). Nevertheless, if
the Laplace exponent φ is regularly varying at 0 then (At/t, Rt/t) converge weakly towards a
non-degenerated random variable (U,O) (see e.g. Theorem 3.2 in [4] or Lemma 2 below, for a
precise statement). This fact, known as the Dynkin-Lamperti theorem, is the clue to solve our
problem.

The following results can be proved with little effort following Bertoin and Caballero. For
b > 0, let Tb be the first entry time into ]b,∞[ for X, viz. Tb = inf{s > 0 : X(s) > b}.

Lemma 1. Fix 0 < x < b. The distribution of the pair (Tb, X(Tb)) under IPx is the same as
that of (

bα exp{−αAlog(b/x)}
∫ L(log(b/x))

0

exp{−αξs}ds, b exp{Rlog(b/x)}

)
.

This result was obtained in [8] as Corollary 5 and still is true under our assumptions because
its proof holds without any hypothesis on the mean of the underlying subordinator. Now,
using the latter result, the arguments in the proof of Lemma 6 in [8] and the Dynkin-Lamperti
Theorem for subordinators we obtain the following result.

11



Lemma 2. Assume that the Laplace exponent φ of the subordinator ξ is regularly varying at
infinity with index β ∈ [0, 1]. Let F : D[0,s] → R and G : R2

+ → R be measurable and bounded
functions. Then

lim
t→∞

E

(
F (ξr, r ≤ s) G

(
At

t
,
Rt

t

))
= E (F (ξr, r ≤ s))E (G (U,O)) , (9)

Where (U,O) is a [0, 1]× [0,∞] valued random variable whose law is determined as follows: if
β = 0 (resp. β = 1), it is the Dirac mass at (1,∞) (resp. at (0, 0)). For β ∈]0, 1[, it is the
distribution with density

pβ(u, w) =
β sin βπ

π
(1− u)β−1(u + w)−1−β, 0 < u < 1, w > 0.

Finally, using arguments similar to those provided in the proof of Corollary 7 in [8] we
deduce from the latter and former results the following Lemma.

Lemma 3. Assume that the Laplace exponent φ of the subordinator ξ is regularly varying at
infinity with index β ∈ [0, 1]. Then as t tends to ∞ the triplet(∫ L(t)

0

exp{−αξs}ds,
At

t
,
Rt

t

)

converges in distribution towards(∫ ∞

0

exp{−αξs}ds, U,O

)
,

Where ξ is independent of the pair (U,O) which has the law specified in the Lemma 2.

We have the necessary tools to prove Theorem 1.

Proof of Theorem 1. Let c > −1, and b(x) = ec log(1/x), for 0 < x < 1. In the case where β = 1
we will furthermore assume that c 6= 0 owing that in this setting 0 is a point of discontinuity
for the distribution of U. The elementary relations

log (b(x)/x) = (c + 1) log(1/x), log
(
b(x)/x2

)
= (c + 2) log(1/x), 0 < x < 1,

will be useful. The following equality in law follows from Lemma 1(
log
(
Tb(x)/x

)
log (1/x)

,
log
(
X
(
Tb(x)/x

))
log(1/x)

)
Law
=α log(b(x)/x)− αAlog(b(x)/x2) + log

(∫ L(log(b(x)/x2))
0 exp{−αξs}ds

)
log (1/x)

,
log (b(x)/x) + Rlog(b(x)/x2)

log (1/x)

 ,

(10)
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for all 0 < x < 1. Moreover, observe that the r.v.
∫ L(r)

0
exp{−αξs}ds converges almost surely

to
∫∞

0
exp{−ξs}ds, as r →∞; and that for any t > 0 fixed,

IP1

(
log (xX(tx−α))

log(1/x)
> c

)
= IP1

(
xX(tx−α) > b(x)

)
, 0 < x < 1,

IP1(Tb(x)/x < tx−α) ≤ IP1(xX(tx−α) > b(x))

≤ IP1(Tb(x)/x ≤ tx−α) ≤ IP1(xX(tx−α) ≥ b(x)), 0 < x < 1.
(11)

Thus, under the assumption of regular variation at 0 of φ, the equality in law in (10) combined
with the result in Lemma 3 lead to the weak convergence(

log(Tb(x)/x)

log(1/x)
,
log
(
X
(
Tb(x)/x

))
log(1/x)

)
D−−−→

x→0+
(α [c + 1− (c + 2)U ] , c + 1 + (c + 2)O) . (12)

As a consequence we get

IP1(Tb(x)/x < tx−α) = IP1

(
log
(
Tb(x)/x

)
log (1/x)

<
log(t)

log (1/x)
+ α

)
−−−→
x→0+

P

(
c

c + 2
< U

)
,

for c > −1. Which in view of the first two inequalities in (11) shows that for any t > 0 fixed

IP1

(
log (xX(tx−α))

log(1/x)
> c

)
−−−−→
x→ 0+

P

(
c

c + 2
< U

)
,

for c > −1, and we have so proved that (i) implies (ii).
Next, we prove that (ii) implies (i). If (ii) holds then

IP1

(
log (xX(tx−α))

log(1/x)
> c

)
−−−−→
x→ 0+

P (V > c) ,

for every c > −1 point of continuity of the distribution of V. Using this and the second and
third inequalities in (11) we obtain that

IP1

(
log
(
Tb(x)/x

)
log (1/x)

<
log(t)

log (1/x)
+ α

)
−−−→
x→0+

P (c < V ) .

Owing to the equality in law (10) we have that

P (c < V )

= lim
x→0+

P

α log(b(x)/x)− αAlog(b(x)/x2) + log

(∫ L(log(b(x)/x2))
0 exp{−αξs}ds

)
log (1/x)

<
log(t)

log (1/x)
+ α


= lim

x→0+
P

(
α(c + 1)−

α(c + 2)Alog(b(x)/x2)

log (b(x)/x2)
< α

)
= lim

z→∞
P

(
Az

z
>

c

c + 2

)
(13)
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So we can ensure that if (ii) holds then Az/z converges weakly, as z → ∞, which is well
known to be equivalent to the regular variation at 0 of the Laplace exponent φ, see e.g. [3]
Theorem III.2. We have so proved that (ii) implies (i).
To finish, observe that if (i) holds with β = 0, it is clear that V = ∞ a.s. given that in this
case U = 1 a.s. In the case where (i) holds with β ∈]0, 1] the limit r.v. V has the same law
as the random variable 2U/α(1−U), and an elementary calculation proves that V has the law
described in Theorem 1.

Remark 5. Observe that if in the previous proof we replace the function b by b′(x, a) =
aec log(1/x), for a > 0, c > −1 and 0 < x < 1, then

IP1(x
1+cX(x−α) > a) = IPx(X(1) > b′(x, a)) = IP1

(
log (xX(x−α))

log(1/x)
> c +

a

log(1/x)

)
,

and therefore the limit of the latter quantity does not depend on a, as x goes to 0 + . That is
for each c > −1 we have the weak convergence of r.v.

x1+cX(x−α)
D−−→

x→0
Y (c),

and Y (c) is an {0,∞}-valued random variable whose law is given by

IP(Y (c) = ∞) = IP
(

c

c + 2
< U

)
, IP(Y (c) = 0) = IP

(
c

c + 2
≥ U

)
.

Therefore, we can ensure that the asymptotic behaviour of X(t) is not of the order ta for any
a > 0, as t →∞.

4 Proof of Theorem 2

Assume that the Laplace exponent of ξ is not regularly varying at 0 with a strictly positive
index. Let h : R+ →]0,∞[ be a slowly varying function such that h(t) → ∞ as t → ∞, and
definef(x) = h(x−α), 0 < x < 1. Assume that h, and so f, are such that

log(xX(x−α))

f(x)

Law−−−→
x→0+

V, (14)

where V is an a.s. non-degenerated, finite and positive valued random variable. For c a
continuity point of V let bc(x) = exp{cf(x)}, 0 < x < 1. We have that

IP1

(
log(xX(x−α))

f(x)
> c

)
−−−→
x→0+

IP(V > c).

Arguing as in the proof of Theorem 1 it is proved that the latter convergence implies that

IP1

(
log
(
Tbc(x)/x

)
log (1/x)

≤ α

)
−−−→
x→0+

P (V > c) .
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Using the identity in law (10) and arguing as in equation (13) it follows that the latter conver-
gence implies that

P(V > c) = lim
x→0+

P

(
Alog(bc(x)/x2)

f(x)
≥ c

)
= lim

x→0+
P

(
Alog(bc(x)/x2)

log(bc(x)/x2)

(
c +

2 log(1/x)

f(x)

)
≥ c

)
,

(15)

where the last equality follows from the definition of bc.

Now, assume that log(t)
h(t)

→ 0, as t → ∞, or equivalently that log(1/x)
f(x)

→ 0, as x → 0 + . It
follows that

P(V > c) = lim
x→0+

P

(
Alog(bc(x)/x2)

log(bc(x)/x2)
≥ 1

)
= lim

z→∞
P

(
Az

z
≥ 1

)
.

(16)

Observe that this equality holds for any c > 0 point of continuity of V. Making c first tend to
infinity and then to 0+, respectively, and using that V is a real valued r. v. it follows that

P(V = ∞) = 0 = lim
z→∞

P

(
Az

z
≥ 1

)
= P(V > 0).

Which implies that V = 0 a.s. which in turn is a contradiction to the fact that V is a non-
degenerated random variable.

In the case where log(t)
h(t)

→ ∞, as t → ∞, or equivalently log(1/x)
f(x)

→ ∞, as x → 0+, we will
obtain a similar contradiction. Indeed, let lc : R+ → R+ be the function lc(x) = log(bc(x)/x2),
for x > 0, this function is strictly decreasing and so its inverse l−1

c exists. Observe that by
hypothesis log(bc(x)/x2)/f(x) = c+ 2 log(1/x)

f(x)
→∞ as x → 0, thus z/f (l−1

c (z)) →∞ as z →∞.

So, for any ε > 0, it holds that f (l−1
c (z)) /z < ε, for every z large enough. It follows from the

first equality in equation (15) that

P(V ≥ c) = lim
z→∞

P

(
Az

z

z

f(l−1
c (z))

≥ c

)
≥ lim

z→∞
P

(
Az

z
≥ cε

)
,

(17)

for any c point of continuity of the distribution of V. So, by replacing c by c/ε, making ε tend
to 0+, and using that V is finite a.s. it follows that

Az

z

Law−−−→
z→∞

0.

By the Dynkin Lamperti Theorem it follows that the Laplace exponent φ of the underlying sub-
ordinator ξ, is regularly varying at 0 with index 1. Which is a contradiction to our assumption
that the Laplace exponent of ξ is not regularly varying at 0 with a strictly positive index.
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5 Proof of Proposition 2

We will start by proving that (i) is equivalent to

(i’) For any r > 0,
log
(∫ r/φ(1/t)

0
exp{αξs}ds

)
αt

Law−−−→
t→∞

ξ̃r, with ξ̃ a stable subordinator with
self-similarity parameter β whenever β ∈]0, 1[, and in the case where β = 0, respectively
β = 1, we have that ξ̃r = ∞1{e(1)<r}, respectively ξ̃r = r a.s. where e(1) denotes an
exponential r.v. with parameter 1.

Indeed, using the time reversal property for Lévy processes we obtain the equality in law∫ r/φ(1/t)

0

exp{αξs}ds = exp{αξr/φ(1/t)}
∫ r/φ(1/t)

0

exp{−α(ξr/φ(1/t) − ξs)}ds

Law
= exp{αξr/φ(1/t)}

∫ r/φ(1/t)

0

exp{−αξs}ds.

Given that the r. v.
∫∞

0
exp−αξsds is finite P-a.s., see e.g. [10], we deduce that∫ r/φ(1/t)

0

exp{−αξs}ds −−−→
t→∞

∫ ∞

0

exp{−αξs}ds < ∞, P−a.s.

These two facts, allow us to conclude that as t → ∞, the r.v. log
(∫ r/φ(1/t)

0
exp{αξs}ds

)
/αt

converge in law if and only if ξr/φ(1/t)/t does. It is well known that the latter convergence holds
if and only if φ is regularly varying at 0 with an index β ∈ [0, 1]. In this case both sequences of
r.v. converge weakly towards ξ̃r.

Let ϕ be the inverse of φ. Assume that (i), and so (i’), hold. To prove that (ii) holds we will
use the following equalities valid for β ∈]0, 1], for any x > 0

P

((
αξ̃1

)−β

< x

)
= P

(
αξ̃1 > x−1/β

)
= P

(
αξ̃x > 1

)
= lim

t→∞
P

(
log

(∫ x/φ(1/t)

0

exp{αξs}ds

)
> t

)

= lim
l→∞

P

(∫ l

0

exp {αξs} ds > exp{1/ϕ(x/l)}
)

= lim
u→∞

P

(
x

(
φ

(
1

log(u)

))−1

> τ (u)

)

= lim
u→∞

IP1

(
x > φ

(
1

log(u)

)∫ u

0

X−α
s ds

)
,

(18)

where the second equality is a consequence of the fact that ξ̃ is self-similar with index 1/β.
So, using the well known fact that ξ̃−β

1 follows a Mittag-Leffler law of parameter β, it follows
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therefrom that (i’) implies (ii). Now, to prove that if (ii) holds then (i’) does, simply use the
previous equalities read from right to left. So, it remains to prove the equivalence between (i)
and (ii) in the case β = 0. In this case we replace the first two equalities in equation (18) by

P(e(1) < x) = P(αξ̃x > 1),

and simply repeat the arguments above.
Given that the Mittag-Leffler distribution is completely determined by its entire moments

the fact that (iii) implies (ii) is a simple consequence of the method of moments. Now we
will prove that (i) implies (iii). Let n ∈ N . To prove the convergence of the n-th moment
of φ

(
1

log(t)

) ∫ t

0
X−α

s ds to that of a multiple of a Mittag-Leffler r.v. we will use the following
identity, for x, c > 0,

IEx

((
c

∫ t

0

X−α
s ds

)n)
= E

((
cτ(tx−α)

)n)
= cn

∫ ∞

0

nyn−1 P(τ(tx−α) > y)dy

=

∫ ∞

0

nyn−1 P(τ(tx−α) > y/c)dy

=

∫ ∞

0

nyn−1 P

(
log(tx−α) > αξy/c + log

∫ y/c

0

exp{−αξs}ds

)
dy,

(19)

where in the last equality we have used the time reversal property for Lévy processes. By
hypothesis, we know that for y > 0, (log(t))−1ξy/φ( 1

log(t))
Law−−−→
t→∞

ξ̃y, and therefore

P

(
log(tx−α) > αξy/φ( 1

log(t))
+ log

∫ y/φ( 1
log(t))

0

exp{−αξs}ds

)
∼ P(1 > αξ̃y) as t →∞.

The claimed convergence will be then deduced from the identity in (19) and the dominated
convergence theorem. To justify the use of the dominated convergence theorem observe that
for any t, y > 0 such that y > φ(1/ log(t)) we have

log

∫ y
φ(1/ log(t))

0

e−αξsds ≥ log

∫ 1

0

e−αξsds ≥ −αξ1,

and as a consequence{
log(tx−α) ≥ αξy/φ(1/ log(t)) + log

∫ y
φ(1/ log(t))

0

e−αξsds

}
⊆
{
log(tx−α) ≥ α

(
ξy/φ(1/ log(t)) − ξ1

)}
.
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Using this, the fact that ξy/φ(1/ log(t))−ξ1 has the same law as ξ y
φ(1/ log(t))

−1 and Markov’s inequality
it follows that the right most term in equation (19) is bounded by above by

(φ(1/ log(t)))n +

∫ ∞

φ(1/ log(t))

nyn−1 P
(
log(tx−α) ≥ αξ y

φ(1/ log(t))
−1

)
dy

≤ (φ(1/ log(t)))n +

∫ ∞

φ(1/ log(t))

nyn−1 exp

{
−(y − φ(1/ log(t))) φ (α/ log (tx−α))

φ(1/ log(t))

}
dy

≤ (φ(1/ log(t)))n + n2n−1 (φ(1/ log(t)))n

φ (α/ log (tx−α))
+ 2n−1Γ(n + 1)

(
φ(1/ log(t))

φ(α/ log(tx−α))

)n

.

The regular variation of φ implies that the most right hand term in this equation is uniformly
bounded for large t.

Therefore, we conclude that

IEx

((
φ

(
1

log(t)

)∫ t

0

X−α
s ds

)n)
−−−→
t→∞

∫ ∞

0

nyn−1 P
(
1 > αξ̃y

)
dy

=

{∫∞
0

nyn−1 P (e(1) > y) dy,∫∞
0

nyn−1 P
(
1 > αy1/β ξ̃1

)
dy,

=

{
n!, if β = 0,

E
((

α−β ξ̃−β
1

)n)
, if β ∈]0, 1],

for any x > 0. We have so proved that (i) implies (iii) and thus finished the proof of Proposition
2.

Proof of Corollary 1. Observe that by Fubinni’s theorem IE1

(∫ t

0
X−α

s ds
)

=
∫ t

0
IE1 (X−α

s ) ds,

and that the function t 7→ IE1(X
−α
t ) is non-increasing. So, by (iii) in Proposition 2 it follows

that ∫ t

0

IE1

(
X−α

s

)
ds ∼ 1

αβΓ(1 + β)φ
(

1
log(t)

) , t →∞.

Then, the monotone density theorem for regularly varying functions (Theorem 1.7.2 in [11])
implies that

IE1

(
X−α

t

)
= o

 1

αβΓ(1 + β)tφ
(

1
log(t)

)
 , t →∞.

Besides, given that IE1

(
X−α

t

)
= E(e−tRφ), for every t ≥ 0, we can apply Karamata’s Tauberian

Theorem (Theorem 1.7.1’ in [11]) to obtain the estimate

P(Rφ < s) = o

 s

αβΓ(1 + β)φ
(

1
log(1/s)

)
 , s → 0 + .
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Besides, applying Fubinni’s theorem and making a change of variables of the form u = sRφ/t
we obtain the identity∫ t

0

IE1(X
−α
s )ds =

∫ t

0

E(e−sRφ)ds

= E

(
t

Rφ

∫ Rφ

0

e−tudu

)
= t

∫ ∞

0

due−tu E

(
1{Rφ>u}

1

Rφ

)
, t > 0.

So using Proposition 2 and Karamata’s Tauberian Theorem we deduce that

E

(
1{Rφ>s}

1

Rφ

)
∼ 1

αβΓ(1 + β)φ(1/ log(1/s))
, s → 0 + .

The proof of the second assertion follows from the fact that Iφ has the same law as α−1Rθ

where θ(λ) = λ/φ(λ), λ > 0, for a proof of this fact see the final Remark in [9].

6 Proof of Theorem 3

The proof of the first assertion in Theorem 3 uses a well known law of iterated logarithm
for subordinators, see e.g. Chapter III in [3]. Whilst, the second assertion in Theorem 3 is
reminiscent of, and its proof is based on, a result for subordinators that appears in [2]. But to
use those results we need three auxiliary Lemmas. The first of them is rather elementary.

Lemma 4. For every c > 0, and for every f : R+ → R+, the a.s. equality of sets holds:

A1 := {ξτ(s) ≤ c log(s), i.o. s →∞} = {ξs ≤ c log(Cs), i.o. s →∞} := A2,

B1 := {ξτ(s) ≥ f (log(s)) , i.o. s →∞} = {ξs ≥ f (log(Cs)) , i.o. s →∞} := B2.

Proof. We just prove the first equality, the second is proved using a similar argument. Let
ω ∈ A1 and (sn, n ≥ 1) be any increasing sequence of reals, we claim that there exists a
subsequence (snk

, k ≥ 1) such that ξsnk
(ω) ≤ c log(Csnk

(ω)) for all k large enough. In that case
we will have that ω ∈ A2 owing to (sn, n ≥ 1) is an arbitrary sequence. Indeed, let rn := Csn(ω),
n ≥ 1 given that ω ∈ A1 we know that there exists a subsequence (rnk

, k ≥ 1) such that

ξτ(rnk
)(ω) ≤ c log(rnk

),

for every k large enough. It follows that the subsequence snk
= τ(rnk

)(ω) does the required
work. Now the inclusion A2 ⊆ A1 is proved via the same argument.

Lemma 5. Under the assumptions of Theorem 3 we have the following estimates of the func-
tional log (Ct) as t →∞,

lim inf
t→∞

log (Ct)

g(t)
= αβ(1− β)(1−β)/β := αcβ, P -a.s. (20)
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and
lim sup

t→∞

log (Ct)

ξt

= α, a.s. (21)

Proof. Observe that
log (Ct) ≤ log(t) + αξt, ∀t ≥ 0,

so
lim inf

t→∞

log (Ct)

g(t)
≤ lim inf

t→∞

(
log(t)

g(t)
+

αξt

g(t)

)
:= αcβ, P−a.s.

because g is a function that is regularly varying at infinity with an index 0 < 1/β. For every
ω ∈ B := {lim inft→∞

ξt

g(t)
= cβ} and every ε > 0 there exists a t(ε, ω) such that

ξs(ω) ≥ (1− ε)cβg(s), s ≥ t(ε, ω).

Therefore, ∫ t

0

exp{αξs}ds ≥
∫ t

t(ε,ω)

exp{(1− ε)αcβg(s)}ds, ∀t ≥ t(ε, ω),

and by Theorem 4.2.10 in [11] we can ensure that

lim
t→∞

log
(∫ t

t(ε,ω)
exp{(1− ε)αcβg(s)}ds

)
(1− ε)αcβg(t)

= 1.

This implies that for every ω ∈ B and ε > 0

lim inf
t→∞

log (Ct(ω))

g(t)
≥ (1− ε)αcβ.

Thus, by making ε → 0+ we obtain that for every ω ∈ B

lim inf
t→∞

log (Ct(ω))

g(t)
= αcβ,

which finish the proof of the first claim because P (B) = 1.

We will now proof the second claim. Indeed, as before we have that

lim sup
log (Ct)

ξt

≤ lim sup
t→∞

log(t) + αξt

ξt

= 1, a.s.,

owing to the fact

lim
t→∞

ξt

t
= E(ξ1) = ∞, a.s.

Besides, it is easy to verify that for every ω ∈ B

αcβ = lim inf
log(Ct)(ω)

g(t)
≤
[
lim inf

t→∞

ξt(ω)

g(t)

] [
lim sup

t→∞

log (Ct(ω))

ξt

]
,

and therefore that
α ≤ lim sup

t→∞

log (Ct)

ξt

, a. s.

This finishes the proof of the a.s. estimate in equation (21).
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Using the Lemma 4 and the estimate (21) the first assertion in Theorem 3 is straightforward.
To prove the second assertion in Theorem 3 we will furthermore need the following technical
result.

Lemma 6. Under the assumptions of (ii) in Theorem 3 for any increasing function f with
positive increase we have that∫ ∞

φ (1/f(g(t))) dt < ∞⇐⇒
∫ ∞

φ (1/f(cg(t))) dt < ∞, c > 0. (22)

Proof. Our argument is based on the fact that φ and g are functions of regular variation at 0,
and ∞, respectively, with index β and 1/β, respectively, and on the fact that f has positive
increase. Under the latter assumption we can assume that there is a constant constant M > 0
such that M < lim infs→∞

f(s)
f(2s)

. Thus for all t, s large enough we have the following estimates
for g and φ.

1

2
≤ g(tcβ)

cg(t)
≤ 2,

1

2
≤ φ (M/s)

Mβφ (1/s)
≤ 2.

Assume that the integral in the left side of the equation (22) is finite. It implies that the integral∫∞
φ
(
1/f(g(cβt))

)
dt < ∞, and so that

∞ >

∫ ∞
φ
(
1/f(g(cβt))

)
dt

≥
∫ ∞

φ (1/f(2cg(t))) dt

≥
∫ ∞

φ

(
f(cg(t))

f(2cg(t))

1

f(cg(t))

)
dt

≥
∫ ∞

φ

(
M

1

f(cg(t))

)
dt

≥ Mβ

∫ ∞ φ
(
M 1

f(cg(t))

)
Mβφ

(
1

f(cg(t))

)φ

(
1

f(cg(t))

)
dt

≥ Mβ

2

∫ ∞
φ

(
1

f(cg(t))

)
dt,

where to get the second inequality we used that f and φ are increasing and the estimate of g,
in the fourth we used the fact that f has positive increase and in the sixth inequality we used
the estimate of φ. To prove that if the integral on the left side of equation (22) is not finite
then that the one in the right is not finite either, we use that lim sups→∞

f(s)
f(s/2)

< M−1, and the
estimates provided above for g and φ, respectively. We omit the details.

Now we have all the elements to prove the second claim of Theorem 3.

Proof of Theorem 3.b. The proof of this result is based on Lemma 4 in [2] concerning the rate
of growth of subordinators when the Laplace exponent is regularly varying at 0. Let f be a

21



function such that the hypothesis in (b) in Theorem 3 is satisfied and the integral in (6) is
finite. A consequence of Lemma 6 is that∫ ∞

φ (1/f(αcβg(t))) dt < ∞.

On the one hand, according to the Lemma 4 in [2] we have that

lim sup
t→∞

ξt

f(αcβg(t))
= 0, P−a.s.

Let Ω1 be the set of paths for which the latter estimate and the one in (20) hold. It is clear
that P (Ω1) = 1. On the other hand, for every ω ∈ Ω1 there exists a t0(ω, 1/2) such that

αcβg(s)/2 ≤ log (Cs(ω)) , ∀s ≥ t0(ω, 1/2),

with cβ as in the proof of Lemma 5. Which together with the fact lim supt→∞
f(t)

f(t/2)
< ∞ implies

that for ω ∈ Ω1,

lim sup
s→∞

ξs(ω)

f (log (Cs(ω)))
≤ lim sup

s→∞

ξs

f(αcβg(s))

f(αcβg(s))

f (αcβg(s)/2)
= 0.

In this way we have proved that

lim sup
s→∞

ξs

f (log (Cs))
= 0, P−a.s. (23)

Now, let f be a function such that the integral in (6) is not finite. As before applying the
Lemma 6 and the integral test in Lemma 4 in [2] we can ensure that

lim sup
t→∞

ξt

f(αcβg(t))
= ∞, P−a.s.

Denote by Ω2 the set of paths for which the latter estimate and the one in (20) hold. Let
(sn, n ∈ N) be a sequence of positive real numbers such that sn → ∞ as n → ∞. For ω ∈ Ω2

there exists a subsequence (snk
, k ∈ N) such that

lim
k→∞

ξsnk
(ω)

f(αcβg(snk
))

= ∞.

Furthermore, there exists a subsequence of (snk
, k ∈ N), say (s̃nk

, k ∈ N), for which

log
(
Cesnk

)
≤ 2αcβg(s̃nk

), ∀k ∈ N .

The former and latter assertions imply that for ω ∈ Ω2

lim
k→∞

ξesnk
(ω)

f
(
log
(
Cesnk

(ω)
)) ≥ lim

k→∞

ξesnk
(ω)

f(αcβg(s̃nk
))

f(αcβg(s̃nk
))

f (2αcβg(s̃nk
))

= ∞.

We deduce therefrom that

lim sup
t→∞

ξt

f(log (Ct))
= ∞, P -a.s. (24)

Therefore, using the estimates in (23) and (24) together with Lemma 4 we conclude the proof.
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7 On regularly varying splitting measures

To the best of our knowledge in the literature about self-similar fragmentation theory there
is no example of self-similar fragmentation process whose dislocation measure is such that the
hypothesis about the function Φ in Corollary 2 is satisfied. In this section we will extend a
model studied by Brennan and Durrett [12, 13] to provide an example of such a fragmentation
process. Next, we will provide a necessary condition for a dislocation measure to be such that
the hypothesis of Corollary 2 is satisfied.

Example 1. In [12, 13] Brennan & Durrett studied a model that represents the evolution of a
particle system in which a particle of size x waits an exponential time of parameter xα, for some
α > 0, and then undergoes a binary splitting into a left particle of size Ux and a right particle
of size (1−U)x. It is assumed that U is a random variable that takes values in [0, 1], with a fixed
distribution and whose law is independent of the past of the system. Assume that the particle
system starts with a sole particle of size 1 and that we observe the size of the left-most particle
and write lt for its length at time t ≥ 0. It is known that the process X := {Xt = 1/lt, t ≥ 0} is
an increasing self-similar Markov process with self-similarity index 1/α, starting at 1, see e.g.
[12, 13] or [8]. It follows from the construction that the subordinator ξ associated to X via
Lamperti’s transformation is a compound Poisson process with Lévy measure the distribution
of − log(U). That is, the Laplace exponent of ξ has the form

φ(λ) = IE
(
1− Uλ

)
, λ ≥ 0.

In this case the Laplace exponent φ is regularly varying at zero with an index β ∈]0, 1[ if and
only if x 7→ IP(− log(U) > x) is regularly varying at infinity with index −β. In particular the
mean of − log(U) is not finite. If so, we have that

− log(lt)

log(t)

Law−−−→
t→∞

V +
1

α
,

where V is a r.v. whose law is described in Theorem 1. Observe that the limit law de-
pends only on the index of self-similarity and that one of regular variation of the right tail of
− log(U) and not directly on the path of the underlying Lévy process. Whilst in the case where
IE (− log(U)) < ∞, it has been proved in [12, 13] and [8] that lt decreases as a power function
of order −α, and the weak limit of tαlt as t → ∞ is 1/Z, where Z is the r.v. whose law is
described in (2) and (3); so the limit law depends on the whole trajectory of the underlying
subordinator. Besides, the first part of Theorem 3 implies that

lim sup
t→∞

log(lt)

log(t)
= −1/α, a.s.

The lim inf can be studied using the second part of Theorem 3. Furthermore, the results
in Corollary 2 establish the convergence in probability of the empirical measure {ρt, t ≥ 0}
associated to the fragmentation process that arises in this model.

It is known, see [5] equation (8), that in general the splitting measure, say ν, of a self-similar
fragmentation process is related to the Lévy measure, say Π, of the subordinator associated via
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Lamperti’s transformation to the process of the tagged fragment, through the formula

Π]x,∞[=

∫
S↓

(∑
i

si1{si<exp(−x)}

)
ν(ds), x > 0.

So the hypothesis of Corollary 2 is satisfied with an index β ∈]0, 1[ whenever ν is such that

• the function x 7→
∫
S↓
(∑

i si1{si<exp(−x)}
)
ν(ds), x > 0, is regularly varying at infinity with

an index −β.

In the particular case where ν is binary, that is when ν{s ∈ S↓ : s3 > 0} = 0, the latter
condition is equivalent to the condition

• the function x 7→
∫ exp(−x)

0
yν(s2 ∈ dy) =

∫ 1

1−exp(−x)
(1 − z)ν(s1 ∈ dz), x > 0, is regularly

varying at infinity with an index −β,

given that in this case s1 is always ≥ 1/2, and ν{s1 + s2 6= 1} = 0, by hypothesis.

8 Final comments

Lamperti’s transformation tells us that under IP1 the process (
∫ t

0
X−α

s ds, log(X(t)), t ≥ 0) has
the same law as (τ(t), ξτ(t)), t ≥ 0) under P . So, our results can be viewed as a study of how
the time change τ modifies the asymptotic behaviour of the subordinator ξ. Thus, it may be
interesting to compare our results with those known for subordinators in the case where the
associated Laplace exponent is regularly varying at 0.

On the one hand, we used before that the regular variation of the Laplace exponent φ at 0
with an index β ∈]0, 1], is equivalent to the convergence in distribution of ϕ(1/t)ξt as t →∞, to
a real valued r.v., with ϕ the right-continuous inverse of φ. On the other hand, Theorem 1 tells
us that the former is equivalent to the convergence in distribution of ξτ(t)/ log(t), as t →∞, to
a real valued random variable. Moreover, under the assumption of regular variation of φ with
an index β ∈]0, 1], we have that limt→∞ ϕ(1/t) log(t) = 0. Thus we can conclude that the effect
of τ(t) on ξ is to slow down its rate of growth, which is rather normal given that τ(t) ≤ t,
for all t ≥ 0, P-a.s. Theorem 1 tells us the exact rate of growth of ξτ , in the sense of weak
convergence. Furthermore, these facts suggest that ϕ(1/τ(t)) and log(t) should have the same
order, which is confirmed by Proposition 2. Indeed, using the regular variation of ϕ and the
estimate in (ii) in Proposition 2 we deduce the following estimates in distribution

ϕ(1/τ(t)) log(t) ∼ ϕ(1/τ(t))/ϕ(φ(1/ log(t))) ∼ (α−βW )−1/β, as t →∞,

where W follows a Mittag-Leffler law of parameter β. Observe also that if β ∈]0, 1[, τ(t)
bears the same asymptotic behaviour as the first passage time for eαξ, above t, Llog(t)/α =
inf{s ≥ 0, eαξs > t}. Indeed, it is known that under the present assumptions the process
{tξu/φ(1/t), u ≥ 0} converges, in Skorohod’s topology, as t →∞, towards a stable subordinator
of parameter β, say {ξ̃t, t ≥ 0}. This implies that φ(1/s)Ls converges weakly to the first passage
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time above the level 1 for ξ̃, and the latter follows a Mittag-Leffler law of parameter β ∈]0, 1[.
Which plainly justifies our assertion owing to Proposition 2 and the fact that φ(1/ log(t))Llog(t)/α

converges weakly towards a r.v. α−βW̃ , where W̃ follows a Mittag-Leffler law of parameter β.

Besides, we can obtain further information about the rate of growth of ξ when evaluated
in stopping times of the form τ. It is known that if the φ is regularly varying with an index
β ∈]0, 1[, then

lim inf
t→∞

ξt

g(t)
= β(1− β)(1−β)/β, P−a.s.,

where the function g is defined in Theorem 3. While the just cited Theorem states that

lim inf
t→∞

ξτ(t)

log(t)
=

1

α
, P−a.s.

These together with the fact that limt→∞
log(t)
g(t)

= 0, confirms that the rate of growth of ξτ(·)
is slower than that of ξ, but this time using a.s. convergence. The long time behaviour of
log(t)/g(τ(t)) is studied in the Proof of Theorem 3. The results on the upper envelop of ξ and
that of ξτ can be discussed in a similar way. We omit the details.
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